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Figure 1. Overview of our method. Our model is trained on EgoPet [4] and BDD100k [33] using an autoregressive transformer model.
We demonstrate that our model can be applied zero-shot to social navigation. We additionally, annotate a subset of EgoPet and finetune a
model to be text-conditioned. However, our text-conditioned model does not quite work properly.

Abstract

Animals perceive the world to plan their actions and
interact with other agents to accomplish complex tasks,
demonstrating capabilities that are still unmatched by AI
systems. To advance our understanding and reduce the
gap between the capabilities of animals and AI systems, we
make further progress along the locomotion prediction task
from the original EgoPet Paper by pretraining with other
datasets and various ablation experiments. We find that
models trained on EgoPet are able to be applied zero-shot
to robotic navigation tasks such as social navigation. We
further annotate a subset of the EgoPet dataset with text
commands and train a text conditioned model by finetuning
our model on these annotations. However, we found that
with our current setup this does not work properly with var-

ious shortcomings and possible future directions.

1. Introduction

Animals are intelligent agents that exhibit various cogni-
tive and behavioral traits. They plan and act to accomplish
complex goals and can interact with objects or other agents.
Consider a cat attempting to catch a rat; this requires the cat
to execute a precise sequence of actions with impeccable
timing, all while responding to the rat’s efforts to escape.

Current Artificial Intelligence (AI) systems can syn-
thesize high quality images [24, 25], generate coherent
text [7, 32], and even code Python programs [9]. But despite
this remarkable progress, learning to understand the world
as well as a cat remains hard to achieve. Recently, there
has been a significant body of research in robotics aimed at



Figure 2. a. EgoPet [4] video examples. Footage of four different animal videos from an egocentric view are included. b. BDD100k [33]
video examples Sample Data from the BDD100k dataset.

learning policies for quadruped locomotion, and other basic
actions [2, 3, 10, 15, 16, 19, 21, 27]. However, these works
rely on curated datasets which require a lot of effort to col-
lect and highly specialized methods. We aim to leverage
the variety of settings in EgoPet such as social interactions
with humans with videos of dogs walking in crowds of peo-
ple and off-road navigation with cats roaming the forests to
create a more generalizable robot navigation model.

To achieve this we use an autoregressive transformer
with the simple task of given a sequence of past m video
frames {xi}ti=t−m and past m poses {pi}ti=t−m, the goal
is to predict the future trajectory of the agent {vj}t+k

j=t+1,
where vj ∈ R11 represents the relative location of the agent
at timestep j. The first 2 values are the XZ values and the
last 9 values are the unit normalized values of the rotation
matrix. In practice, we condition models on m = 8 frames
and predict k = 8 future locations which both correspond
to 4 seconds into the future. We utilize a much simpler task
compared to other works [12, 13] and hopefully allows us to
capture nuances such as collision avoidance implicitly. To
demonstrate our model’s generalizability we run our model
in the zero-shot setting to the HuRoN dataset to demonstrate
that social navigation is implicitly learned from EgoPet.

However, the agent’s intent in these videos can be dif-
ficult to infer in this setting so we aim to better align the
trajectory prediction with a set of intentions. To do this, we
annotate a subset of the EgoPet dataset with text commands
of what the agent does in the video. We then finetune a
model on these text command annotations but find that this
is a flaw in our method.

To summarize our contributions, we demonstrate that
we developed a trajectory prediction model using the
EgoPet dataset which demonstrates strong generalizability

to robotic tasks such as social navigation when applied in
the zero-shot setting. In addition, we additionally anno-
tated a subset of the EgoPet dataset with descriptions of the
agent’s behavior develop a framework for creating a text-
conditioned model with shortcomings.

2. Related Work

Egocentric Trajectory Prediction. Agents interact with
the world from a first-person point of view, thus predict-
ing an agent’s trajectory can provide valuable insight to
an agent’s planning and interactions among other things.
There are many works which do this with egocentric human
videos such as [22, 23] which does this on human walking
data, [28] which performs this on months of a single stu-
dent’s egocentric videos, [6] which performs this on ego-
centric basketball videos. These works explore a variety of
different methods such as [22, 28] take a nearest-neighbor
approach to this while other works such as [23] take an au-
toregressive approach to this problem.

Language-Conditioned Policies. Conditioning on lan-
guage allows humans to have an easier interface to inter-
act with models which makes it an area of interest for study.
This can be seen in works such as [14, 18, 20, 26] which aim
to condition robotic policies on text. Work such as [20] aims
to build robots which can perform a variety of long hori-
zon tasks conditioned on natural language such as robotic
arm control. [14, 18] both tackle robotic navigation by fus-
ing the visual and text information together. [26] creates a
framework for using VLMs to annotate unstructured data to
train a language conditioned robot policy for navigation.



Figure 3. a. Default Model. Represents that default autoregressive transformer model we employ. b. Text-Conditioned Model. Repre-
sents that text-conditioned model we use where we simply add a text-encoder.

3. Datasets
3.1. EgoPet [4]

EgoPet Trajectories. The EgoPet dataset is a unique
collection of egocentric video footage primarily featuring
dogs and cats, along with various other animals like ea-
gles, wolves, turtles, sea turtles, sharks, snakes, cheetahs,
pythons, geese, alligators, and dolphins. EgoPet was col-
lected by scraping these egocentric animals videos from
various online sources such as TikTok and YouTube. The
dataset consists of 64.4% dog videos and 29.6% cat videos
and is primarily skewed toward videos shorter than 30 sec-
onds with a total of 84 hours of videos. EgoPet also has
extracted trajectories from the videos using an odometry
system called DPVO. Upon further analysis of these DPVO
extracted trajectories we found that while the X (left-right)
and Z (forward-backward) directions were relatively accu-
rate for the majority of videos, the Y (up-down) directions
were not accurate so we only use the XZ directions for our
trajectory prediction. View Figure 2a. for EgoPet sample
data.

EgoPet Text-Conditioned Annotations. In addition to
the EgoPet dataset, I annotated the validation set and 200
videos from the training dataset. The annotation would con-
sist of text description of what the agent does in the video
and formulates it in a command style. In order to get more
variety from the text annotations, for the training dataset we
additionally prompt GPT-4 [1] to create 15 more variations
of the text annotation.

3.2. BDD100k [33]

The Berkeley Deep Drive 100k dataset (BDD100k) is a
driving dataset consisting of 100,000 driving videos for a
total of 1,111 hours. BDD100k has driving videos from
New York, Berkeley, San Francisco, and the Bay Area in a
variety of different scenes and weather conditions. For our

use case, we use the GPS location of the car and predict
the trajectory from this GPS location. View Figure 2b. for
BDD100k sample data.

4. Method
Our approach employs an autoregressive transformer tasked
with the following: given a sequence of m past video frames
xi

t
i=t−m and m past poses piti=t−m, it aims to forecast the

future trajectory vj
t+k
j=t+1 of the agent, where vj ∈ R11 de-

notes the agent’s relative position at timestep j. The first 2
values of vj represent the XZ coordinates, and the remain-
ing 9 values are the unit normalized values of the rotation
matrix. The models are conditioned on m = 8 frames and
predict k = 8 future locations, which equates to a future
timeframe of 4 seconds.

4.1. Architecture

Our trajectory prediction model employs an autoregressive
decoder-only transformer. We use a vit-large V-JEPA [5]
encoder for our video frames, a simple MLP to embed our
past poses. We follow the LLAVA [17] multimodal ap-
proach by simply concatenating our frame and pose tokens
together and then conditioning our decoder on these to-
kens. Then for the text-conditioned setting we use the large
FLAN-T5 [11] text encoder to encode the text and then ad-
ditionally concatenate these tokens with the pose and frame
tokens. For our decoder, we use 24 layers and 24 heads with
an embedding dimension of 1024. View Figure 3 for a gen-
eral overview of the models we use. For our optimizer we
use a schedule free optimizer with learning rate 1e–8.

4.2. Prediction Setting

For our prediction setting we found that the DPVO gen-
erated trajectories were inaccurate along the Y-axis so we
only predict the XZ axes. Additionally, we predict the el-



Figure 4. a. The text condition is ’Walk around along the sidewalk trailing behind owners.’ and we see the both the default model and
text-conditioned model goes toward the left so generally both do not do that well in this case. b. The text condition is ’Follow owner
forward in the store and turn around with owner.’ and we see that the text-conditioned model goes forward more closely to groundtruth
but the default model goes slightly forward to the right. c. The text condition is ’Walk forward onto the deck and then veer left to the
other edge of the house.’ and we see that the default model goes toward the right into the field but the text-conditioned model does go more
forward as similar in groundtruth. d. The text condition is ’Walk up to the door on the right and walk into the house while not hitting the
baby. Then go up the stairs to your food and eat.’ and we see that both the default model and the text-conditioned model go forward toward
the left which is close to where the door is but the pacing is a bit off from groundtruth.

ements of the rotation matrix which we invidually element
wise normalize and predict the normalized values. We sam-
ple 8 second videos, where the first 4 seconds are our con-
ditioning and we predict the poses for the next 4 seconds.
We perform this at 2 Hz for a total of conditioning on 8
poses and frames and predicting the next 8 poses. We set
up the prediction as the setting where we predict the poses
relative to the first pose. For our text-conditioning we sim-
ply add the text tokens to the conditioning and predict the
same trajectory. When we train our text-condition model we
use a checkpoint of the default model trained to 40 epochs
and finetune the model on the text-conditioned clips for 10
epochs.

4.2.1 Zero-Shot HuRoN Dataset Evaluation

5. Experiments
To evaluate our model’s predicted poses 8 timesteps into
the future corresponding to 4 secds we form trajectories
from these predicted motions and compute the RMSE of
the Absolute Trajectory Error (ATE) and Relative Pose Er-
ror (RPE) metrics against the ground truth trajectories. ATE
and RPE are commonly employed metrics for evaluating
systems such as SLAM and visual odometry [8, 30, 31, 34].
ATE first aligns the ground truth with the predicted trajec-
tory, and then computes the absolute pose difference. RPE
measures the difference between the predicted and ground
truth locomotion [29]. In this section, we ablate various

parts of our method.

5.1. Model Architecture

In this experiment, we examine our choice of model be-
tween the usage of an encoder and decoder for our poses or
just an decoder-only model. The encoder + decoder model
has 16 layers and 16 heads for both the pose encoder and
pose decoder. The decoder only model on the other hand
has 24 layers and 24 heads. This experiment is conducted
over 40 epochs. We see from Table 1 that while the Encoder
+ Decoder model performs better on ATE and RPE Rota-
tion, our method prioritizes RPE Translation performance.
It is also possible in this experiment that we did not train the
model for long enough given that the decoder only model
has more capacity.

Table 1. Model Architecture Ablation

ATE RPE Trans. RPE Rot.

Encoder + Decoder 0.672 0.587 10.51
Decoder Only 0.701 0.569 10.90

5.2. Pose Orientation

In this experiment, we examine our choice of predicting the
future pose orientation as quaternion coordinates or as the
normalized elements of the rotation matrix. In this experi-
ment the model remains the same and both use schedule free



Figure 5. a. Our model seems to go forward similar to SACSon but also goes more towards the left possibly due to the person walking to
the right. b. Our model seems to stay in place to avoid walking into the human in front. c. Our model goes left and then forward to walk
around the human. d. Our model goes left around human.

training and we conduct this experiment over 10 epochs. We
find that predicting the rotation matrix elements leads to a
considerably lower RPE Rotation value.

Table 2. Pose Orientation Ablation

RPE Rot.

Quaternion Coordinates 14.96
Rotation Matrix 9.88

5.3. Model Conditioning

In this experiment, we study the impact of conditioning our
model on the frames and poses. We conduct 3 experiments,
1 conditioned on both frames and poses, 1 conditioned on
only frames, and 1 conditioned on only poses. From Fig-
ure 3 we can determine that generally the Frames and Poses
model performs the best in terms of RPE Translation and
does marginally worse than the Frames only model in terms
of ATE. The Poses only model performs the best in terms of
RPE Rotation. Generally it seems like the Frames and Poses
model performs the best but likely reveals a more nuanced
impact for these conditionings.

5.4. BDD100k Data

In this experiment we experiment the impact of using
BDD100k data during training. Also a small note is that
during training, since we do not have pose orientations from
BDD100k we only have a translation loss for the BDD100k
data. For using the BDD100k data we use 50% EgoPet data

Table 3. Model Conditioning Experiment

ATE RPE Trans. RPE Rot.

Frames & Poses 0.693 0.564 10.853
Frames only 0.692 0.579 10.828
Poses only 0.841 0.725 10.607

and 50% BDD100k data. We report the EgoPet model at
40 epochs as the validation metrics start to go up after 40
epochs. Similar, for the EgoPet + BDD100k model we re-
port the model at 80 epochs as the validation metrics start to
go up after 80 epochs. We find that while RPE translation
is marignally lower when using BDD100k data, ATE and
RPE Rotation improve.

Table 4. BDD100k Data Experiment

ATE RPE Trans. RPE Rot.

EgoPet 0.693 0.564 10.853
EgoPet + BDD100k 0.664 0.566 10.149

6. Results
6.1. Quantitative Results

From Table 5 we can see that our Default Model and Text-
Conditioned Model both outperform the baseline of aver-
aged trajectory. We also see that our text-conditioned model
performs better than the Default Trajectory. However from



Figure 6. We explore command editing where the actual text is ’Walk forward to the door of the house.’ but we edit it to ’Turn right into the
grass field.’ where we see that the model’s prediction does not change when the text conditioning changes which suggests that the model
completely ignores the text conditioning.

Figure 6 we can determine that our model is actually ignor-
ing the text-conditioning so the text-conditioning is actually
likely not the source of performance boost. We suspect that
this performance boost actually comes from when anno-
tating the text-conditiong videos we only annotated videos
where the trajectory from DPVO made sense so finetuning
on this more accurate subset is a possible source for this
boost in performance.

Table 5. Quantitative Results: The Average baseline is simply the
average trajectory from the training dataset. The Default Model
is our Decoder Only model trained on EgoPet for 40 epochs. The
text-conditioned model is the Default Model finetuned for the text-
conditioned case for 10 epochs.

ATE RPE Trans. RPE Rot.

Average (Baseline) 0.904 1.332 67.878
Default Model 0.693 0.564 10.853
Text-Conditioned Model 0.635 0.549 10.878

6.2. Qualitative Results

6.2.1 EgoPet Visualizations

In this section, we visualize our model on some of the
EgoPet videos with both the default model and the text-
conditioned model. From Figure 4 we can see that the pre-
dicted trajectories are fairly sensible with navigating the dif-
ferent scenarios. It does seem like the text conditioning im-
proves the qualitative performance as well. However, from
Figures 6 it seems the model completely ignores the text
conditioning which suggests that the text conditioning was
not the cause of the performance boost. I suspect that the
performance actually came from the finetuning stage on top

of the model where I would only text annotate clips with a
good trajectory so it is possible that more clips with more
correct trajectories are actually the cause of the performance
boost.

6.2.2 Zero-Shot HuRoN Dataset Evaluation

In this section, we apply our model on our model on the
HuRoN dataset [13] which is a social navigation dataset and
tests the model’s ability to perform in the presence of hu-
mans and other obstacles. From the visualizations present
in Figure 5 we can see that our model is able to perform rel-
atively well in the zero-shot setting on the HuRoN dataset
making sensible choices such as avoiding humans or mov-
ing around obstacles.

7. Limitations
This work primarily works with predicting trajectories from
the videos and evaluating on videos from robotic datasets
but is not actually tested on a real robot limiting us from
understanding the true potential of such a model. In ad-
dition, the text-condition annotations are very lacking with
only 200 training videos and require a lot of time to anno-
tate. Future work could include the usage of works such as
[26] which could produce a more scalable annotation pro-
cess.

8. Conclusion
This work presents a setup to leverage the internet-scale
dataset EgoPet [4] by using the DPVO extracted trajecto-
ries on the videos and a simple autoregressive transformer
model with the simple task of predicting the future poses.
We find that this task can be aided by the use of other



datasets such as BDD100k [33]. In addition, we attempt to
text condition our model but find there are some shortcom-
ing with our method. Finally, we see that our model is able
to be applied zero-shot to social navigation in the HuRoN
dataset [13].
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